

AFRL-IF-RS-TR-2006-11

Final Technical Report
January 2006

REPAIRABLE ARCHITECTURE FOR INTRUSION-
TOLERANT NETWORK-CENTRIC SYSTEMS

Stony Brook University

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2006-11 has been reviewed and is approved for publication

APPROVED: /s/

JOSEPH J. GIORDANO
Project Engineer

 FOR THE DIRECTOR: /s/

 WARREN H. DEBANY JR., Technical Advisor
 Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JANUARY 2006

3. REPORT TYPE AND DATES COVERED
Final May 2005 – Aug 2005

4. TITLE AND SUBTITLE
REPAIRABLE ARCHITECTURE FOR INTRUSION-TOLERANT NETWORK-
CENTRIC SYSTEMS

6. AUTHOR(S)

Tzi-cker Chiueh

5. FUNDING NUMBERS
C - FA8750-05-1-0232
PE - N/A
PR - N/A
TA - N/A
WU - N/A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Stony Brook University
Computer Science Department

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFGB
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2006-11

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Joseph J. Giordano/IFGB/(315) 330-1518/ Joseph.Giordano@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
In summary, given an internet service, Arachne automatically instruments its application components to keep track of
inter-request dependencies and associations between incoming requests and persistent state update operations. In
addition, Arachne keeps proper update logs to ensure every file system and DBMS update operation is undoable. At
repair time, Arachne derives the set of requests that are directly or indirectly dependent on the error/attack request in
question, initiates file systems and DBMS undo operations to erase the side effects of these requests, and finally re-
executes them according to their timestamps to re-incorporate their effects into the state of the internet service.

15. NUMBER OF PAGES
8

14. SUBJECT TERMS
DBMS, Arachne, MTTR, MTTB

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

1 Introduction... 1

2 Technical Approach .. 2

3 Impacts .. 4

i

Repairable Architecture for Intrusion-Tolerant
Network-Centric Systems

Tzi-cker Chiueh

Computer Science Department
Stony Brook University
chiueh@cs.sunysb.edu

1 Introduction

Despite a great deal of research on computer/network security, there is no such thing as un-breakable sys-
tems. Social engineering is one class of attacks that exploit human weaknesses to gain unauthorized accesses
to technically secure systems. Insider attack is another class that is almost impossible to defeat in real time
with absolute certainty. The fact that it is impossible to anticipate and seal all security holes argues strongly
for a fast repairapproach to secure computer system design. That is, whereas most past computer secu-
rity research concentrated on the design of better protection mechanisms to detect or prevent intrusion, it’s
time to accept that computer systems cannot be absolutely impenetrable, and thus shift at least some of the
cybersecurity research focus to the development of system design techniques that can minimize the cost of
computer security breach by facilitating post-intrusion system clean-up and repair.

In the context of computer security, a system’s availability metric is defined asMTTB
MTTB+MTTR , where

MTTB refers to mean time between security breaches and MTTR refers to mean time to repair after a breach.
To maximize the availability metric, computer security system designers could either increase MTTB to in-
finity, essentially building an absolutely secure system, or decrease MTTR to zero, i.e., repairing an attacked
system instantly. As in fault-tolerant systems, pushing the MTTB beyond a certain level may become expo-
nentially more expensive for every fixed increment of improvement, e.g., from 0.9999 to 0.99999. There-
fore the most cost-effective approach to designing intrusion-tolerant systems may well be a combination of
MTTB maximization and MTTR minimization.

A security vulnerability is a system fault, which, when exploited, leads to a failure that manifests itself
as an intrusion. Traditional fault-tolerant systems assume a fail-stop model, where the system is able to
detect a failure and stop immediately after it occurs. While this model works reasonably well for hardware
failures and to some extent software failures, it is inadequate for system failures due to innocent human
errors or malicious attacks. In those cases, thefailure detection window, which is the interval between when
a failure occurs and when it is detected, could easily be hours if not days. Some of the side effects that take
place during a failure detection window are considered corrupted because their values are data-dependent
on the failure, whereas the rest are considered benign. For faults that result in long detection window,
simply restoring the system back to the state before the failure takes place is unacceptable in many cases
because it leads to too much collateral damage, i.e., many benign side effects are thrown away unnecessarily.
Imagine an enterprise web-based service is compromised and the attack is detected only 24 hours later, how
does the service’s system administrator clean up the state corruption due to this intrusion? Today, the system
administrator has two options. First, she can restore the service’s persistent storage, i.e., the database and the

1

file system, back to the state before the input error took place. This approach is simple and fast, but suffers
from the drawback that all non-corrupted updates during the 24-hour period are unnecessarily wiped out.
Alternatively, she can attempt to preserve as much non-corrupted data as possible by manually removing
all the side effects that are contaminated by the attack. However, this approach is labor-intensive, time-
consuming and thus error-prone. In practice, neither option is desirable.

A repairable information system is one that after an error/attack can quickly and automatically erase
corrupted side effects while preserving benign ones, all without human intervention. Standard database
recovery mechanisms only aim to restore a failed system back to the state before the failure occurs, and thus
are different from repair mechanisms, whose goal is to preserve as many benign side effects as possible after
a failure is detected. The two fundamental issues in designing any repairable information system are:

1. How to maintain the before image of every state update so that each state update is undoable, and

2. How to keep track of dependencies among update operations to the shared state so that it is possible
to identify those and only those updates that are affected by an error or attack?

Update loggingis the standard solution to the first issue, and has been built into many information systems,
e.g., transaction logs in DBMS servers and metadata journals in file systems.Inter-operation dependency
tracking, on the other hand, is rarely supported in existing information systems, but actually plays a more
important role, because in practice, the most time-consuming part of a post-intrusion repair process is to
scope out the exact “damage perimeter” associated with an error/attack. Once this perimeter is established,
undoing the effects of those corrupting update operations can largely be automated.

The goal of this research project is to design and implement a repairable distributed system architecture
calledArachne, which could serve as the foundation for building intrusion-tolerant network-centric systems.
In particular, this project focuses on internet services. Upon detecting an error/attack, an internet service
built on Arachnecould first determine the set of input requests that are directly or indirectly dependent on
the error/attack, then undo these requests, re-execute some of them if necessary, and eventually completely
eliminate the side effects of the error/attack. The entire repair process is fully automated. Moreover, this
fast repairability could be added to the internet services in a way completely transparent to their developers.

2 Technical Approach

Modern web-based internet services typically assume a three-tier architecture, in which a front-end web
server, such as Apache or IIS, interacts with the end users, an application server, such as JBoss or Websphere,
implements the business application logic specific to an internet service, and a relational DBMS server such
as PostgreSQL or Oracle, supports storage and retrieval of persistent data. In some cases, processes running
on an application server can also use plain files to store persistent data. In adding fast repairability to internet
services,Arachnemakes the following assumptions about them:

• An internet service’s persistent state is stored in either a file system or a DBMS.

• It is acceptable to undo a request whose response has already been returned to the requesting client.

• The response of an internet service to an incoming request depends only on the input request and the
service’s state.

2

Because of the first assumption,Arachneonly needs to ensure updates to file system and DBMS be undoable.
The second and third assumptions allowArachneto undo and re-execute innocent requests that are the
collateral damage of an error/attack.

The main technical challenge of building repairable systems is how to add fast repairability to existing
information systems without requiring any modifications to their internal implementations. More specifi-
cally, given an internet service that is based on the three-tier architecture, how to maintain the before image
of every persistent state update operation, how to associate the service’s persistent state updates with the in-
put requests triggering them, and how to determine whether one request is dependent on another, all without
changing the way the service is implemented.

Arachneincludes an API-aware compiler that can augment the source code of the set of programs com-
posing an internet service with additional code that maintains sufficient auxiliary information to accurately
keep track of inter-request dependencies, and logs all the input requests so that they can be re-executed in
the future if necessary. Because communicating components of an internet service could reside in different
machines,Arachne’s request tracking mechanism also follows messages being exchanged across the net-
work. To do this, the compiler needs to be aware of the APIs used for inter-component communication as
well as persistent state modifications.Arachneembeds the additional instrumentation code to an internet
service transparently and automatically without requiring any involvement from its developers.

To undo file system update operations, the file system image needs to be continuously snapshotted, i.e.,
every file update operation generates a new version of the updated file block(s). None of the mainstream
operating systems, Microsoft Windows OS, Linux, or BSD Unix, support such continuous snapshotting
capability. To maximize its portability across multiple platforms,Arachneadopts a user-level NFS proxy
architecture to implements continuous snapshotting in a way that is independent of the underlying operating
system and yet is as efficient as kernel-level implementation. This user-level NFS proxy is able to selec-
tively erase the side effects of those file update operations that should be undone at repair time by issuing
corresponding compensating NFS commands.

To undo DBMS update operations,Arachneexploits the fact that modern database managers already
include a transaction log that records sufficient information for undoing committed transactions. As long
asArachnecan configure the underlying DBMS to keep its transaction log for as long a period as the fault
detection window, no additional database update logging is required. Fortunately, the maximum transac-
tion log size in all commercial DBMSs, including Oracle, Sybase, DB2, and MS SQL server, is indeed
configurable. To capture inter-request dependency,Arachneadopts a SQL rewriting proxy architecture that
intercepts incoming SQL queries/responses, rewrites them to maintain additional bookkeeping information,
and extracts these bookkeeping information from SQL query responses to deduce inter-request dependen-
cies. Because this SQL rewriting proxy operates on standardized SQL queries and responses, it is portable
across all SQL-based relational DBMS servers on the market. At repair time,Arachneundoes each com-
mitted transaction that it determines should be aborted through a corresponding compensating transaction.
These undo operations are also portable because they too are SQL-based. However, because the format
of database transaction log is proprietary, parsing a DBMS’s transaction log to construct a compensating
transaction for every already committed transaction that needs to be aborted is DBMS-specific.

In summary, given an internet service,Arachneautomatically instruments its application components
to keep track of inter-request dependencies and associations between incoming requests and persistent state
update operations. In addition,Arachnekeeps proper update logs to ensure every file system and DBMS
update operation is undoable. At repair time,Arachnederives the set of requests that are directly or indirectly

3

dependent on the error/attack request in question, initiates file system and DBMS undo operations to erase
the side effects of these requests, and finally re-executes them according to their timestamps to re-incorporate
their effects into the state of the internet service.

Architecturally,Arachneconsists of three components: (1) an API-aware compiler that can automat-
ically transforms application programs running on the web server and application server into a form that
could accurately capture the inter-dependencies among input requests, (2) a portable user-level continuous
snapshotting NFS-snooping proxy that could capture dependencies among NFS requests and render ev-
ery file update operation undoable, and (3) a portable user-level SQL-rewriting proxy that can keep track
of inter-transaction dependencies among generate compensating transactions for committed transactions.
Combined together, the three components ofArachneautomate the entire post-intrusion damage repair pro-
cess, and thus greatly reduce an internet service’s mean time to repair (MTTR) after an attack. As a result,
Arachneis able to provide fast repairability to internet services without requiring any human intervention or
software/configuration modifications to the operating system or the DBMS. In other words,Arachneadds
fast repairability to internet services in a way that isautomatic, comprehensive, andportable.

3 Impacts

AlthoughArachneis designed for the three-tier architecture, it is equally applicable to other system archi-
tectures such as wide-area-network Web Services and Joint Battlespace Infosphere (JBI), which is built on
a publish-subscribe communication mechanism. As for research impacts, the proposed project is expected
to make the following contributions to intrusion-tolerant and survivable systems research:

• An automatic message tagging technique that can effectively associate the file I/O operations and
database transactions which take place in various components of an internet service with the corre-
sponding input request triggering them,

• A user-level continuous snapshotting file system architecture that can preserve the before image of
every file system update operation in a way that is independent of the underlying file system,

• A portable SQL-rewriting proxy architecture that can transparently rewrite SQL queries on the fly
to capture inter-transaction dependencies in a way that is both efficient and accurate, i.e., no false
negatives and false positives, and

• A reusable implementation framework that could keep track of inter-request dependencies that arise
due to shared data that reside in a file system, a DBMS, an address space or communication messages.

4

